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Magnetic lattice 

Fig. 6.  Simulations were done using GSAS. This is the graph of  the maximum 

structure factor as a function of ∆x. The threshold of 10-8 is passed at approximately 

3.7x10-6 . 
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a (a-glide) k + l = 2n None 

b (b-glide) h + l = 2n None 

c (c-glide) h + k = 2n None 
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Further plan 

To analyze the magnetic reflection conditions 

• Change in magnetic moment amplitude 

• Change in magnetic moment orientation 

• Confirm results by analyzing F2 formula 

BT1 32-counter high-resolution  

neutron powder diffractometer at NCNR 

Data Analysis 

GSAS- General Structure Analysis 

System 

Fig 2. Neutron powder diffractometer at NCNR (left) and an 

example of a powder diffraction pattern (right up). The 

observed data (crosses), the calculated nuclear intensities 

(green solid line), and the magnetic diffraction intensities 

(bottom, solid line of the differences between observed and 

calculated intensities) are shown in the figure. Fit was 

performed by using a General Structure Analysis System 

(GSAS)* Program. 

 

 *Larson, A. C. & Von Dreele, A. C. Los Alamos National Laboratory Report No. LAUR086-748 

(1990). 
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Fig 1. Relationship between structure and properties. When a 

material is made, we are expected to know the structure and 

properties, and to find the relationships. The structure 

analysis will help us modify the crystal structure and 

therefore to design a new structure and improve the 

properties. In materials with magnetic properties, neutron 

diffraction is one of the most useful techniques. One can use 

the neutron powder diffractometer to measure the diffraction 

intensities, as shown in Fig. 2. 

Fig 4. Reflection condition analysis. Different magnetic lattices give 

unique diffraction patterns. (a) calculated pattern for body-centered 

ferromagnetic lattice where only reflections having h+k+l = 2n appear. 

(b) calculated pattern for body-centered antiferromagnetic lattice where 

only reflections having h+k+l = 2n+1 appear. These reflection 

conditions will help us find the magnetic lattice and symmetry 

operations, i.e. to determine the magnetic symmetry of space group. 

Fhkl = mf exp(2pi(hMx + kMy + lMz))       (1) 

Fig 3. Neutron powder diffraction data and the magnetic structure 

of the material.  

Abstract 
Materials with magnetic properties are more and more 

interesting in daily life. Neutron technique is one of the most 

useful methods for investigating magnetic structure and 

properties. We used simulation to model the 36 magnetic 

lattices and symmetry operations, and to analyze the magnetic 

structure factor for neutron diffraction. We conclude systematic 

absence of magnetic neutron diffraction for the magnetic lattice 

and symmetry operations. The reflection conditions for nuclear 

diffraction and magnetic diffraction are compared and 

discussed.  

Structure in materials science 

The neutron powder diffraction data contains crystal and 

magnetic structure information. For example, the diffraction 

pattern in figure 3a contains both crystal and magnetic 

structure information for a compound with the structure as 

shown in figure 3b. We can use the diffraction pattern to 

determine the crystal and magnetic structures.  

1) Peak position: 2dsinq = nl;  

2) Nuclear diffraction intensities: IN = CMT [(g e
2)/(2mc2)]2  

|FN|2 ; 

3) Magnetic diffraction intensities: IM = CMT  A(qB) [(g 

e2)/(2mc2)]2  <1-(t· M)2> |FM|2. 

 where F is the structure factor in which contains all the 

structure information. The equation for F is: 
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Fig 5. (a) the 36 magnetic black and white lattices. (b) Some of the magnetic 

symmetry operations. 

    The reflection conditions for the 36 magnetic lattices (Fig. 5a) 

and symmetry operations (Fig. 5b) were analyzed by calculating 

the structure factor for magnetic reflections using GSAS. As 

shown in Figure 6, the calculated F2 (function (1)) as a function 

of ∆x (a shift from the ideal position of the body-centered, in the 

left figure). If there are impurities in the crystal, the coordinates 

will not form symmetry exactly, so there must be a limit of what 

can be considered systematic absence.  

Fig 7. The reflection conditions for the lattice centering functions for white and 

black lattices. 

Fig 8.  nuclear and magnetic reflection conditions for symmetry operations 

    In table, the prime “  ” is the operation of spin flip, which is 

not considered in nuclear diffraction, so there are no nuclear 

reflection conditions for these symmetry operations.  This makes 

the magnetic reflection conditions for symmetry operations much 

more difficult. Since a ferromagnetic lattice has the same 

magnetic reflection conditions as nuclear reflection conditions, a 

magnetic moment in one  direction will give an antiferromagnetic 

lattice, whereas a magnetic moment in a different direction will 

give a ferromagnetic lattice (as shown in Fig. 5b). The results 

listed are the ones which give antiferromagnetic lattices, since 

there is only one direction of magnetic moment which will give a 

ferromagnetic lattice for each symmetry operation.  

     Also, some of the magnetic symmetry operations do not have 

reflection conditions, most notably seen in the glide operations. I 

will do mathematical analysis of the F2 formula to see why 

certain symmetry operations do not have magnetic reflection 

conditions.  

Fig 9.  Definition of magnetic diffraction. 

The magnetic interaction vector is defined q= ε(ε K)-K. When 

K is parallel to ε, q will be 0. Therefore, the structure factor is 

measured as 0 when the scattered vector (h, k, l) is parallel to the 

magnetic moment. It is important to note the direction of the 

magnetic moment, because the scattering vector could be parallel 

to the magnetic moment and still meet reflection conditions. This 

can be seen in figure 3. The material in figure 3 has 

ferromagnetic body-centered lattice, because we have found that 

the observed reflections have condition  of  h + k + l = 2n, 

however, (0, 0, 2) is absent. it is because that the magnetic 

moment is parallel to the scattering vector of (002) . 
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Results of the magnetic reflection conditions 


